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Received: 21 March 2007 / Accepted: 30 September 2007 / Published online: 23 October 2007

� Springer-Verlag 2007

Abstract Using breeding values in parental selection of

self-pollinating crops seems to be superior to conventional

selection strategies, where selection is often based on sev-

eral traits which are correlated among each other. However,

analysing each trait separately can bias estimates of

breeding values. This study examined responses to selection

for total merit indices based on breeding values resulting

from single- and multiple-trait best linear unbiased predic-

tion (BLUP). We generated data for a multi-environment

trial of a ‘‘virtual’’ parental population in which the phe-

notypic value of inbred lines was influenced by additive,

additive-by-additive epistatic, year, location, block and

genotype-by-environment interaction effects. Two traits

with heritabilities of 0.7 and 0.3 and nine different corre-

lation scenarios between traits (estimated phenotypic

correlation ranging from –0.39 to +0.36) were simulated.

Gain in selection response was greater for multiple-trait

than for single-trait breeding values, especially if traits were

negatively correlated. For all correlation scenarios, the

overall standard errors of difference of multiple-trait pre-

dictors were lower than those of single-trait analysis.

Introduction

A previous study has shown that selection among parental

inbred lines of self-pollinating crops can be improved by

the estimation of breeding values using best linear unbiased

prediction (BLUP) (Bauer et al. 2006). In contrast to the

standard BLUP approach, the prediction of BLUP breeding

values is characterized by including pedigree information

in the mixed model equations (MME). BLUP is able to

handle large, unbalanced data sets where all available

information from cultivar registration, official recommen-

dation, and private trials can be used in the prediction.

Using data sets merged from different trials, BLUP-

breeding values can be calculated even for newly-devel-

oped lines with only a few records of data. As Piepho and

Möhring (2006) stated, BLUP is useful for analysis of

multi-environment trials, provided that all data are con-

sidered in the analysis.

Usually, the selection of superior parental lines is based

on several traits, which may be genetically and phenotyp-

ically correlated. Selection bias can result if such traits are

analysed individually, especially if selection is based on

independent culling levels. For example: after selection of

lines based on one trait, the lines remaining to be consid-

ered for a second trait do not represent a random sample of

the entire parental population (Pollak et al. 1984; Im et al.

1989). Considering all target traits simultaneously in the

prediction of BLUP breeding values can greatly enhance

the genetic merit of selected lines. Multiple-trait evalua-

tions are commonly used in animal breeding (Henderson

and Quaas 1976). Mrode (2000) considered the multiple-

trait BLUP as the best methodology to simultaneously

evaluate animals on two or more correlated traits, and

proposed a selection index involving BLUP breeding val-

ues weighted by economic weights. Relative to the

standard selection index introduced by Smith (1936) and

Hazel (1943), such an index has the advantage that the

genetic relatedness among the lines can be taken into

account as a random factor.
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Multiple-trait breeding values have been used in forest

tree breeding and in perennial crops. Persson and Andersson

(2004) compared single-trait versus multiple-trait REML-

based BLUP breeding values using a Monte Carlo simula-

tion model which resembled the breeding design of Swedish

Scots pine (Pinus sylvestris L.). The authors stated that

multiple-trait predictors resulted in a lower average bias

than single-trait analysis. Using single-trait analysis, genetic

correlation between traits was underestimated (Persson and

Andersson 2004). Costa e Silva et al. (2000) first carried out

single-trait evaluations to identify favourable parents of

Norway spruce [Picea abies (L.) KARST.]. Afterwards, the

authors applied a multiple-trait model to construct indices

for genetic improvement of multiple traits. A multiple-trait

BLUP-model was also used in analysing data from Persian

walnut (Juglans regia L.) (Aleta et al. 2004). In this study,

BLUP-based estimates of parental performance were

superior to the common family-mean. Da Costa et al. (2002)

examined multiple-trait BLUP in rubber tree (Hevea)

breeding, considering genotype-by-environment interac-

tion. The authors stated that multiple-trait predictors were

more accurate than a single-trait model. In peach [Prunus

persica (L.) Batsch], de Souza et al. (1998a, b) used a

bivariate BLUP model to estimate genetic and phenotypic

correlations between traits. In general, for reproductive as

well as fruit traits, genetic correlations among pairs of traits

were higher than phenotypic correlations.

Piepho and Möhring (2006) and Piepho et al. (2007)

recommended the use of multiple-trait BLUP breeding

values in annual crops. In the study reported here, we

compared the accuracy of single-trait versus multiple-trait

REML-based BLUP breeding values using multi-environ-

mental data of a ‘‘virtual’’ parental population of inbred

lines generated by Monte Carlo simulation.

The objective of our research was to examine whether a

total merit index based on single- or multiple-trait breeding

values is superior for parent selection in self-pollinated

crops in terms of different genetic and residual correlations

among traits.

Theory and methods

Simulation

Using Monte Carlo simulation in the interactive matrix

language (IML) in SAS 9.1 (SAS Institute 2004), a com-

puter program to generate a ‘‘virtual’’ plant population was

developed, assuming a finite number of 150 loci with two

alleles each and a finite population size of 250 parental

inbred lines.

To create the population, we first simulated a base

population of 50 lines, which were assumed to be unrelated

and homozygous with an inbreeding coefficient of

F = 0.99. In the first crossing cycle, lines of the base

population were randomly chosen and crossed among each

other to produce 100 progeny lines. Starting from these

progeny lines, in the second crossing cycle the progeny

lines were randomly crossed among each other to generate

100 further progeny lines. The progeny lines were also

assumed to be homozygous. Thus, pedigree information

was available for the entire population.

The genotypic value of a line was influenced by normally-

distributed additive and epistatic effects with a mean of zero

and a standard deviation r of 1 [N (0,1)]. As the lines are

assumed to be inbred, dominance effects do not exist. On

average, 25 random allele combinations were influenced by

additive-by-additive epistatic effects. Genotypic value for a

line resulted from the sum of the additive effects over all

alleles and loci, plus an epistatic effect, if present.

The simulation of phenotypic information of the lines

followed from the structure of a multi-environment trial

with three years and with a total of 55 locations. In the first

year, only the base population lines were tested at 25

locations. In the second year, the lines for the base popu-

lation and the first crossing cycle were grown at 15

locations. In the third year, all 250 lines (of the base pop-

ulation, the first and the second crossing cycle) were grown

at 15 locations. The resulting data set was systematically

unbalanced, since there were many records available for

established lines (of the base population) and little infor-

mation about the newly developed progeny lines (of the

crossing cycles). In all cases, we assumed a randomized

complete block design with two blocks and two replica-

tions. The phenotypic value for each line was simulated by

adding normally-distributed [N (0,1)] year, location, block,

genotype-by-environment interaction, and residual effects

to the genotypic value. In the simulation, related lines also

had similar genotype-by-environment interaction effects.

Furthermore, we simulated two traits v and w with

heritabilities of h2 = 0.7 and 0.3, resulting from residual

standard deviations of r = 50 and 160, respectively.

Between both traits, all simulated effects of genotypic

value, year, location, block, genotype-by-environment

interaction, and the residue were uncorrelated among each

other. Then, in calculating the phenotypic value of the

traits, a genetic and a residual correlation between the traits

was simulated, with the simulation of the genetic correla-

tion based on the genotypic value.

Four scenarios of identical genetic rg and residual re

correlation among both traits were generated with rg =

re = –0.8, –0.4, +0.4 or +0.8. In four further correlation

scenarios, rg and re were different: (1) rg = –0.2 and

re = +0.4, (2) rg = +0.4 and re = +0.8, (3) rg = +0.8 and

re = +0.4, and (4) rg = –0.8 and re = –0.4. In addition, for

comparison, no correlation between traits was simulated
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(rg = re = 0). Phenotypic value Pvijkmn of trait v (h2 = 0.7)

was calculated by:

Pvijkmn ¼ gvi þ yvj þ lvk þ bvm þ gevik þ evijkmn

with genotypic effect gvi of trait v (i = 1, … , 250), year

effect yvj of trait v (j = 1–3), location effect lvk of trait v

(k = 1, … , 55), block effect bvm of trait v (m = 1, 2),

genotype-by-environment interaction effect gevik of trait v,

and residual effect evijkmn of trait v (n = 1, … , 165,000).

For trait w (h2 = 0.3), phenotypic value Pwijkmn was

calculated following Olausson and Rönningen (1975):

Pwijkmn¼ ðrg � gviÞþ
ffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
g

q

� gwi

� �h i

þ ywjþ lwk

þbwmþgewikþ ðre � evijkmnÞ�þ
ffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
e

q

� ewijkmnÞ
� �� �

with genotypic effect gwi of trait w, year effect ywj of trait

w, location effect lwk of trait w, block effect bwm of trait w,

genotype-by-environment interaction effect gewik of trait w,

residual effect ewijkmn of trait w, genetic correlation coef-

ficient rg, and residual correlation coefficient re.

Simulated phenotypic correlation among traits was cal-

culated by Pearson’s correlation coefficient. The observed

phenotypic and genetic correlation was estimated using

ASReml software (Gilmour et al. 2002).

The computer simulation procedure of the ‘‘virtual’’

parental population was repeated 100 times using different

seeds. To avoid overlapping streams of random numbers,

seeds were generated using the SEEDGEN Macro devel-

oped by Fan et al. (2002).

Data analysis

Single-trait and multiple-trait analysis were both performed

using ASReml software (Gilmour et al. 2002).

In the analysis, each correlation scenario was evaluated

separately. The statistical model was as follows:

Yijkmn ¼ lþ gi þ yi þ lk þ bm þ geik þ eijkmn

where: Yijkmn = observation n of genotype i in year j,

location k and block m; l = overall mean; gi = random

genetic effect of the lines i; yj = random year effect j;

lk = random location effect k; bm = random block effect m;

geik = random genotype-by-environment interaction effect;

eijkmn = residual effect.

The mixed model equations (MME) used for single-trait

analysis are presented in the appendix. In single-trait

analysis, the residuals are identically and independently

distributed, so that the covariance matrix of the residuals R

will be I · re
2 where I is an identical matrix and r2

e is the

residual variance. In multiple-trait BLUP, several traits are

considered in a single analysis so it is necessary to specify

the covariance matrix R of the residuals. Following Gil-

mour et al. (2002), the error structure for the residuals was

defined as two-dimensional with independent observations

and an unstructured covariance matrix.

According to Henderson and Quaas (1976), in multiple-

trait analysis the MME matrices become:
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X1 0

0 X2

�

�

�

�

�

�

�

�

; Z ¼
Z1 0

0 Z2

�

�

�

�

�

�

�

�

; S¼
S1 0

0 S2

�

�

�

�

�

�

�

�

;

T ¼
T1 0

0 T2

�

�

�

�

�

�

�

�

; V ¼
V1 0

0 V2

�

�

�

�

�

�

�

�

;

W ¼
W1 0

0 W2

�

�

�

�

�

�

�

�

; b̂ ¼ b̂1

b̂2

�

�

�

�

�

�

�

�

�

�

; û ¼
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Relatedness among lines is accounted for in the genetic

relationship matrix A. Following Henderson (1976), the

additive genetic covariance cij between lines i and j is

calculated as twice the coefficient of coancestry h (Malécot

1948):

c¼ 2h

¼
1þFi forcii ðFi¼ inbreedingcoefficientÞ
0:5 � cipþ ciq

	 


forcij andparentspandqof the jth line

�

Computing the genetic relationship matrix A, in contrast to

Henderson (1976), the inbreeding of the ancestor lines in

the base population was considered by calculating all

diagonal elements cii by 1 + Fi. Then the value of cii equals

one if line i is not inbred and two if line i is fully

homozygous.

Heritability was calculated based on variance compo-

nents resulting from single-trait analysis following Hanson

(1963).

Selection

In both single-trait and multiple-trait analysis, superior

parental lines were selected by a total merit index. Fol-

lowing Smith (1936) and Hazel (1943), an optimum index

resulting from the sum of breeding values of both traits

predicted for each line multiplied by weighted factors was

calculated by y = b1 x1 + b2 x2, where b1 and b2 are the

weighted factors, and x1 and x2 are the breeding values of

trait v and trait w, respectively. The b values were obtained

from b = P–1 · G · a, where b is an n · 1 vector of b1 and

b2 values, P is an n · n matrix of phenotypic covariance

among traits, G is an n · n matrix of genotypic covariance

among traits, and a is an n · 1 vector of economic weights

for the traits. The matrices P and G were estimated using

the ASReml software package (Gilmour et al. 2002).
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Economic weights for the traits were assumed to be equal

for both traits.

In each correlation scenario, 10% of the lines with the

largest index value obtained from both single- and multiple-

trait analysis were selected. For comparison of single- and

multiple-trait analysis, mean genotypic value of selected

superior lines averaged over both traits was computed.

Results

In this study, two traits with heritabilities of 0.7 and 0.3

were considered, with varying genetic and residual corre-

lation relationships between traits. Simulated (real) and

estimated (observed) correlations are displayed in Table 1.

As expected, estimated phenotypic correlation among traits

is similar to the simulated phenotypic correlation. But

estimated genotypic correlation is also close to the simu-

lated genotypic correlation.

The objective of this study was to determine whether a

total merit index based on single- or multiple-trait breeding

values is superior. In general, the gain in selection response

is increased if multiple-trait breeding values are used in the

selection (Figs. 1, 2), regardless of whether genetic (rg) and

residual (re) correlation among traits are identical. For three

correlation scenarios with (1) rg = re = +0.8, (2) rg = +0.4

and re = +0.8, and (3) rg = –0.2 and re = +0.4 there is little

difference between mean genotypic value of lines selected

by a total merit index of single- or by multiple-trait analysis,

but in all other correlation scenarios, the mean genotypic

value of lines selected by a total merit index of multiple-trait

breeding values is higher than that of lines selected by index

values of single-trait predictors. When traits are negatively

correlated, the difference between multiple- and single-trait

analysis is enhanced (Figs. 1, 2). The association of breed-

ing values from single-trait analysis with those from

multiple-trait analysis, is lowest for negatively-correlated

traits and highest for positively-correlated traits (Figs. 3, 4).

In general, the overall standard error of difference of

multiple-trait predictors is lower than the overall standard

error of difference of single-trait breeding values (Table 2).

For multiple-trait breeding values, the overall standard

error of difference is lower for negatively-correlated traits

than for positively-correlated traits.

Discussion

In general, predictions were highly accurate, with simulated

and estimated phenotypic and genotypic correlation close

Table 1 Simulated and estimated genotypic and phenotypic corre-

lation between the traits considering varying genetic (rg) and residual

(re) correlation coefficients

Correlation scenario Estimated

genotypic

correlation

Simulated

phenotypic

correlation

Estimated

phenotypic

correlation

rg = re = 0 –0.02 0 –0.01

rg = re = –0.8 –0.79 –0.38 –0.39

rg = re = –0.4 –0.40 –0.13 –0.15

rg = re = +0.4 0.36 0.13 0.12

rg = re = +0.8 0.76 0.38 0.36

rg = –0.2, re = +0.4 –0.22 0.12 0.12

rg = +0.4, re = +0.8 0.36 0.37 0.36

rg = +0.8, re = +0.4 0.76 0.14 0.12

rg = –0.8, re = –0.4 –0.80 –0.14 –0.15
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Fig. 1 Mean genotypic value of superior parental lines selected by

total merit indices of single- and multiple-trait analysis and consid-

ering varying correlation coefficients among traits (with identical

genetic rg and residual re correlation). The mean genotypic value was

averaged over both traits. BV breeding value
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Fig. 2 Mean genotypic value of superior parental lines selected by

total merit indices of single- and multiple-trait analysis and consid-

ering varying correlation coefficients among traits (where genetic

correlation rg is unequal to residual correlation re). The mean

genotypic value was averaged over both traits. BV breeding value
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together (Table 1). Using the REML estimation of geno-

typic and phenotypic correlations, Holland (2006) found that

the power of detection was greater for phenotypic than for

genotypic correlation. However, in our study the detection

rates of genotypic and phenotypic correlation were similar.

The inclusion of information for correlated traits in one

analysis results in a higher selection response than analy-

sing these traits separately (Figs. 1, 2). In general, the mean

genotypic value increased if lines were selected by a total

merit index based on multiple-trait breeding values. This

can be confirmed also by considering overall standard error

of difference (Table 2). As the overall standard error of

difference is lower in multiple-trait analysis than in a single-

trait model, the gain in accuracy of multiple-trait breeding

values is superior to single-trait analysis. Thompson and

Meyer (1986) stated that the increase in selection response

using multiple-trait breeding values is due to taking infor-

mation for all correlated traits into consideration

simultaneously in a single analysis and thus accounting for

the residual covariance structure among traits. In addition,

following Bernardo (1999), in the multiple-trait model the

selection pressure for the traits is decreased. This decrease

Fig. 3 Scatter plots of breeding values resulting from single- and

multiple-trait analyses considering varying correlation coefficients

among traits [with identical genetic (rg) and residual (re) correlation].

Breeding values of each analysis were averaged over both traits. For

each correlation scenario, Spearman’s correlation coefficient r was

computed (right corner of the graph)
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of selection pressure is the higher the more traits are con-

sidered (Bernardo 1991).

The advantages of multiple-trait analysis over a single-

trait approach are greatest when traits are negatively cor-

related. For positively-correlated traits, the phenotypic

values of the traits change in the same direction, whereas

phenotypic values of negatively-correlated traits change in

opposing directions. If two traits are negatively correlated,

single-trait selection to increase one trait would result in a

decrease in phenotypic performance for the second trait,

whereas selection based on multiple-trait breeding values

should provide opportunities for simultaneous gain in both

traits. Consistent with this, we found that negative corre-

lation between traits increases differences between mean

genotypic values from multiple-trait analysis and those

from single-trait analysis (Figs. 1, 2). Further, negative

correlation between traits weakened the rank correlation

between multiple-trait and single-trait breeding values

(Figs. 3, 4), indicating that the breeding values estimated

by the two methods differ more when traits are negatively

correlated. Selection based on multiple-trait breeding val-

ues should therefore provide a greater gain in selection

response if traits are negatively correlated. As noted by

Verrier (2001), who examined marker-assisted selection

using a multiple-trait BLUP model in an animal popula-

tion, positively correlated traits can be simultaneously

improved regardless of the selection strategy.

In our study, we used a total merit index resulting from

the sum of breeding values (obtained from single- or mul-

tiple-trait BLUP) that were weighted by a factor. This

weighted factor was calculated following Smith (1936) and

Hazel (1943) and was obtained by multiplying the inverse of

the phenotypic variance–covariance matrix among traits

with the genotypic variance–covariance matrix and eco-

nomic weights. Bernardo (1991) has suggested an

alternative approach using retrospective index weights that

were derived using the selection differential (the difference

between the mean of the selected lines and the population

mean). That approach is useful when small population sizes

cause large errors in estimation of genotypic covariance

among traits, but is not needed for simulated data that can be

expected to be consistent. In our work the total merit index

resulted from the weighted sum of BLUP breeding values

and not from the weighted sum of phenotypic performance

of the traits as in the standard Smith–Hazel selection index.

This is an important difference because BLUP allows the

genetic relatedness among the lines to be taken into account

as a random factor in the statistical model. Including pedi-

gree information in addition to the observation values of the

traits can greatly enhance the selection response.

As we generated a ‘‘virtual’’ population by computer

simulation, we were able to assume that the pedigree

information was accurate. In practice, errors in the pedigree

can occur, and these could lead to errors in the genetic

Fig. 4 Scatter plots of breeding

values resulting from single-

and multiple-trait analyses

considering unequal genetic (rg)

and residual (re) correlation

coefficients among traits.

Breeding values of each

analysis were averaged over

both traits. For each correlation

scenario, Spearman’s

correlation coefficient r was

computed (right corner of the

graph)
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relationship matrix. We were also able to expect the data to

be consistent, without measurement error. In practical

breeding, measurement error can result in outlier obser-

vations that will bias estimates. To address this, Jamrozik

et al. (2007) suggested a robust estimation procedure using

a multiple-trait BLUP model in which outlier observations

were corrected in the iteration process for solving the

MME. Applying this method in breeding Canadia Jersey

cowes, they obtained similar breeding values as in a stan-

dard BLUP model.

Our research considered the simultaneous improvement

of two or more traits. In practice, this is often desired. For

example, breeders may want to increase both grain yield

and protein content. In contrast, Satoh (2004) considered

improvement of one trait with another trait held at its

current level through the use of a restricted BLUP impos-

ing constraints on some members of the population.

Disadvantages of multiple-trait BLUP are the high costs

of computing and slower convergence of REML log-like-

lihood than when using single-trait BLUP. According to

Mehrabani-Yeganeh et al. (1999) multiple-trait BLUP

requires a large number of iterations because traits pull in

different directions. Further, the use of a less stringent

convergence criterion affects selection response more than

under single-trait BLUP (Mehrabani-Yeganeh et al. (1999).

In our study, 1 GB RAM on a Pentium IV processor was

needed to compute a multiple-trait analysis of at least two

correlated traits. Thus, a multiple-trait analysis of a high

number of correlated traits could be computationally

demanding.

In further research it would be interesting (1) to deter-

mine the influence of genetic correlations differing across

environments and populations, and (2) to examine what

happens if genes affecting a trait have different effect sizes

and allele frequencies.

In conclusion, selecting potential parental lines that are

characterized by a superior genetic disposition is an

essential requirement in breeding self-pollinating crops.

Poor decisions in parental selection will have major con-

sequences for breeding success. Using multiple-trait

breeding values seems to be an important tool for

enhancing selection response in parental selection as eco-

nomically relevant traits like grain yield and protein

content, for example, are highly correlated among each

other. Hence, we suggest the routine use of multiple-trait

breeding values in selection decisions of parental inbred

lines of self-pollinating crops whenever possible.
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Appendix

Mixed model equations (MME) of single-trait analysis

Table 2 Overall standard error of difference of single- and multiple-

trait BLUP-breeding values for two traits with different heritabilities

(h2) considering varying genetic (rg) and residual (re) correlation

coefficients among traits

Correlation scenario Single-trait BLUP Multiple-trait BLUP

rg = re = 0 6.64a 6.25

11.93b

rg = re = –0.8 6.64 4.46

9.83

rg = re = –0.4 6.64 5.82

11.53

rg = re = +0.4 6.64 6.45

11.55

rg = re = +0.8 6.64 6.55

9.83

rg = –0.2, re = +0.4 6.64 6.36

11.54

rg = +0.4, re = +0.8 6.64 6.50

9.87

rg = +0.8, re = +0.4 6.64 6.50

11.50

rg = –0.8, re = –0.4 6.64 5.67

11.46

a Overall standard error of difference of the analysis of trait v
(h2 = 0.7)
b Overall standard error of difference of the analysis of trait w
(h2 = 0.3)

X0R�1X X0R�1Z X0R�1S X0R�1T X0R�1V X0R�1W
Z 0R�1X Z 0R�1Z þG�1 Z 0R�1S Z 0R�1T Z 0R�1V Z 0R�1W
S0R�1X S0R�1Z S0R�1Sþ I� 1

r2
s

S0R�1T S0R�1V S0R�1W

T 0R�1X T 0R�1Z T 0R�1S T 0R�1T þ I� 1
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where: b̂ = vector of fixed effect; û = vector of random

additive genetic effect of the lines; ô = vector of random

year effect; p̂ = vector of random location effect;

q̂ = vector of random block effect; r̂ = vector of random

genotype-by-environment interaction; y = vector of obser-

vation values; R = variance–covariance matrix of residual

effects; I = identity matrix; G ¼ A r2
a; A = genetic rela-

tionship matrix; r2
a = additive genetic variance; r2

s =

variance of year effects; r2
t = variance of location effects;

r2
v = variance of block effects; r2

w = variance of geno-

type-by-environment interaction effects. X, Z, S, T, V, and

W represent the corresponding design matrices. As in this

study there is no fixed effect, X includes only an overall

mean of l = 1.
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Bauer AM, Reetz TC, Léon J (2006) Estimation of breeding values of

inbred lines using best linear unbiased prediction (BLUP) and

genetic similarities. Crop Sci 46:2685–2691

Bernardo R (1991) Retrospective index weights used in multiple trait

selection in a maize breeding program. Crop Sci 31:1174–1179

Bernardo R (1999) Two-trait selection response with marker-based

assortative mating. Theor Appl Genet 98:551–556

Costa e Silva J, Wellendorf H, Borralo NMG (2000) Prediction of

breeding values and expected genetic gains in diameter growth,

wood density and spiral grain from parental selection in Picea
abies (L.) KARST. Silvae Genet 49:102–109

Da Costa B, de Resende MDV, de Souza Gonçalves P, de Almeida
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